Emma Stoye investigates how instruments for space exploration are built and how the technology brings benefits down to Earth
It’s been a good couple of years for space science. Last November, the European Space Agency (ESA) celebrated successfully landing a spacecraft on a comet for the first time. Nasa’s Curiosity rover has spent the last three years trundling across the surface of Mars. And as Chemistry World goes to press, the agency’s New Horizons probe, which launched back in 2006, is making a historic flypast of dwarf planet Pluto. With every new corner of the universe we explore, we learn more and more about what it is made of. And while the rockets and spaceships are certainly impressive, we owe the vast majority of our knowledge to the scientific instruments they carry. Behind every mission are thousands of people, vast sums of money and years – sometimes decades – of painstaking development to take the best of our research tools to space.